

Bearing Request Form Request for Bearing Calculation

Reset form

Customer Details:	
Company name:	Address:
Contact person:	Country:
E-mail:	Tel.nr:
Project Reference:	
Bearing No. or part No. for Miba bearing (if known):	Order code from previous orders:
Please supply dimensions using s	ketch (page 2):
Please provide as much information as available.	
Where information cannot be provided, Miba wil	Il suggest typical values based on the given information.
General data	Further Information
Rotor Speed	rpm
Type of Application	
Oil Viscosity Type	
Oil Inlet Temperature	
Oil Inlet Pressure	
Purchase data	
Number of Journal Bearings	
Number of Thrust Bearings	Instrumentation
-	
Bearing Geometry	
Shaft diameter	
(with tolerance) Bearing housing diameter	
(with tolerance) Bearing housing axial length	
(with tolerance)	

Bearing 1	
F _{rad1}	N
F _{rad1 at speed zero}	N
D ₁	mm
B ₁	mm
Bearing Type	
d ₁	mm
I ₁	mm

Bearing 1 design	
Split Design	
Lubrication Design	
Self-Equalizing Design	
Spherical Pivot Design	
Combined Bearing	
Hydrostatic Jacking Oil	
Direction of Rotation	

Bearing 2 (leave blank if same as Bearing 1)	
F _{rad2}	N
F _{rad2 at speed zero}	N
D_2	mm
B_2	mm
Bearing Type	
d_2	mm
	mm

Bearing 2 design (if same leave blank)	
Split Design	
Lubrication Design	
Self-Equalizing Design	
Spherical Pivot Design	
Combined Bearing	
Hydrostatic Jacking Oil	
Direction of Rotation	

Thrust Bearing	
F _{ax}	N
F _{ax at speed zero}	N
D _{in} (thrust collar)	mm
D _{out} (thrust collar)	mm
d _t	mm
Bearing Type	

Bearing design	
Split Design	
Lubrication Design	
Self-Equalizing Design	
Spherical Pivot Design	
Hydrostatic Jacking Oil	
Direction of Rotation	